Sains Malaysiana 54(2)(2025): 493-504
http://doi.org/10.17576/jsm-2025-5402-15
Catalytic
Transesterification of Waste Cooking Oil using Fe-Modified Chicken Bone
Catalyst: Characterization and Optimization
(Transesterifikasi Pemangkin Sisa Minyak Masak menggunakan Mangkin Tulang Ayam Diubah Suai Fe: Pencirian dan Pengoptimuman)
NURUL
IZZATI SAHARUDDIN1, MUHAMMAD AFIQ DANIAL MOHAMED NASSIR1,
AINA ZULAIKHA MUZAFAR SHAH1, TENGKU SHAFAZILA TENGKU SAHARUDDIN1,
NURUL JANNAH ABD RAHMAN3, SYAHIRAH YAHYA4 & FARAH
WAHIDA HARUN1,2,*
1Faculty of Science and Technology, Universiti Sains Islam Malaysia,
71800 Nilai, Negeri Sembilan, Malaysia
2Sustainable Environment Research Group, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan,
Malaysia
3Tamhidi Centre, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan,
Malaysia
4Department of Chemical Technology and Food, Politeknik Tun Syed Nasir Syed Ismail, 84600 Pagoh, Johor,
Malaysia
Diserahkan: 21 Jun 2024/Diterima:
21 November 2024
Abstract
Food waste, including non-reusable materials like chicken bones, forms a
significant portion of solid waste. In Malaysia, approximately 540,000 tons of
waste cooking oil (WCO) is discarded annually without proper treatment. Chicken
bones, rich in calcium, can be utilized as a heterogeneous catalyst in
biodiesel production, addressing waste management issues. However, the use of
chicken bone as a catalyst presents challenges such as the unmodified chicken
bones often require a pre-treatment step to reduce high free fatty acid (FFA)
content in WCO to prevent saponification, limiting their efficiency. Hence,
this research endeavors to innovate by converting WCO
into biodiesel via a transesterification reaction, leveraging waste chicken
bones as a catalyst. The calcined waste chicken bone (CB) was modified to form
5 wt% Fe-CB, and 10 wt%
Fe-CB. The catalysts were found to have similar physical characteristics in
terms of the structure and surface morphology observed from XRD, N2 adsorption-desorption, and SEM analysis. Among the catalysts, 10 wt% Fe-CB, produced the highest yield of fatty acid methyl
esters (FAME), reaching 72.52%, under mild reaction conditions (10:1 methanol-to-WCO molar ratio, 1 wt% catalyst loading, 60 oC reaction temperature and 4 h reaction time). The capability of 10 wt% Fe-CB to produce a higher fatty acid methyl esters
(FAME) yield than 5 wt% Fe-CB and calcined CB was due
to the presence of CaO with binary transition metal
oxides providing both acidic and basic sites, allowing for more efficient WCO
conversion.
Keywords: Fatty acid methyl esters;
transesterification; waste chicken bone; waste cooking oil
Abstrak
Sisa makanan, termasuk bahan yang tidak boleh diguna semula seperti tulang ayam, membentuk sebahagian besar sisa pepejal. Di Malaysia, kira-kira 540,000 tan sisa minyak masak (WCO) dibuang setiap tahun tanpa rawatan yang sewajarnya. Tulang ayam, yang kaya dengan kalsium, boleh digunakan sebagai mangkin heterogen dalam penghasilan biodiesel, sekali gus menangani masalah pengurusan sisa. Walau bagaimanapun, penggunaan tulang ayam sebagai mangkin menghadapi cabaran seperti tulang ayam yang tidak diubah suai sering memerlukan langkah pra-rawatan untuk mengurangkan kandungan asid lemak bebas (FFA) yang tinggi dalam WCO bagi mengelakkan saponifikasi yang membataskan kecekapan proses. Oleh itu, penyelidikan ini berusaha untuk berinovasi dengan menukar WCO kepada biodiesel melalui tindak balas transesterifikasi, memanfaatkan tulang ayam terbuang sebagai mangkin. Tulang ayam yang telah dikalsin (CB) diubah suai untuk membentuk 5 wt% Fe-CB dan 10 wt%
Fe-CB. Mangkin ini didapati mempunyai ciri fizikal yang serupa dari segi struktur dan morfologi permukaan yang diperhatikan melalui analisis XRD, penjerapan-penyahjerapan N2 dan SEM. Antara mangkin yang diuji, 10 wt% Fe-CB menghasilkan peratusan tertinggi ester metil asid lemak (FAME), mencapai 72.52% dalam keadaan tindak balas yang ringan (10:1 nisbah molar metanol-kepada-minyak, beban mangkin 1%, suhu tindak balas 60 °C dan masa tindak balas 4 jam). Keupayaan 10 wt%
Fe-CB untuk menghasilkan asid lemak metil ester (FAME)
yang lebih tinggi daripada 5 wt% Fe-CB dan CB terkalsin adalah disebabkan oleh kehadiran CaO dengan oksida logam peralihan binari yang menyediakan tapak berasid dan beralkali, membolehkan penukaran WCO yang lebih cekap.
Kata kunci: Asid lemak metil ester; sisa minyak masak; sisa tulang ayam; transesterifikasi
RUJUKAN
Aghel, B., Mohadesi,
M., Razmehgir, M.H. & Gouran,
A. 2023. Biodiesel production from waste cooking oil in a micro-sized reactor
in the presence of cow bone-based KOH catalyst. Biomass Conversion and
Biorefinery 13(15): 13921-13935.
Ahmed, H.A., Altalhi,
A.A., Elbanna, S.A., El-Saied, H.A., Farag, A.A., Negm, N.A. & Mohamed, E.A. 2022. Effect of reaction
parameters on catalytic pyrolysis of waste cooking oil for production of
sustainable biodiesel and biojet by functionalized
montmorillonite/chitosan nanocomposites. ACS Omega 7(5): 4585-4594.
AlSharifi, M. & Znad,
H. 2020. Transesterification of waste canola oil by lithium/zinc composite
supported on waste chicken bone as an effective catalyst. Renewable Energy 151: 740-749.
Amal, R., Nadeem, R., Intisar, A., Rouf, H., Hussain, D. & Kousar,
R. 2024. An insight into the catalytic properties and process optimization of
Fe, Ni doped eggshell derived CaO for a green
biodiesel synthesis from waste chicken fat. Catalysis Communications 187: s 106848.
Amal, R. & Usman, M. 2024. A review of
breakthroughs in biodiesel production with transition and non-transition
metal-doped CaO nano-catalysts. Biomass and Bioenergy 184: 107158.
Andas, J. & Jusoh,
N.F.E. 2022. Converting waste chicken bones into heterogeneous catalyst for
biodiesel synthesis from waste cooking oil. Malaysian Journal of Analytical
Sciences 26(5): 1102-1111.
Ayoola, A.A., Fayomi,
O., Adeeyo, O., Omodara, J.
& Adegbite, O.S. 2019. Impact assessment of
biodiesel production using CaO catalyst obtained from
two different sources. Cogent Engineering 6(1): 1615198.
Bashah, N.A., Luin, A., Jalaluddin, I.A., Shahhaizad,
I.A., Ismail, N.F. & Kamis, W.W. 2019.
Characteristics of chromium based mixed oxide catalyst in biodiesel production. Journal of Physics: Conference Series 13499(1): 012143.
Basumatary, S.F., Brahma, S., Hoque, M., Das, B.K.,
Selvaraj, M., Brahma, S. & Basumatary, S. 2023.
Advances in CaO-based catalysts for sustainable
biodiesel synthesis. Green Energy and Resources 2023: 100032.
Bernama. 2023. May 11. Aidilfitri: SWCorp N. Sembilan lupus lebih 6,000 tan sisa pepejal.
Astro Awani.
https://www.astroawani.com/berita-malaysia/aidilfitri-swcorp-n-sembilan-lupus-lebih-6000-tan-sisa-pepejal-360748
Bharti, P., Singh, B. & Dey, R.K. 2019.
Process optimization of biodiesel production catalyzed by CaO nanocatalyst using
response surface methodology. Journal of Nanostructure in Chemistry 9:
269-280.
Bitire, S.O., Jen, T. & Belaid,
M. 2021. Yield response from the catalytic conversion of parsley seed oil into
biodiesel using a heterogeneous and homogeneous catalyst. ACS Omega 6(39):
25124-25137.
Borah, M.J., Das, A., Das, V., Bhuyan, N. & Deka, D. 2019. Transesterification of
waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 242: 345-354.
Cao, L., Liu, W., Luo, Q., Yin, R., Wang,
B., Weissenrieder, J., Soldemo,
M., Yan, H., Lin, Y., Sun, Z. & Lu, J. 2019. Atomically dispersed iron
hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565(7741):
631-635.
Changmai, B., Vanlalveni,
C., Ingle, A.P., Bhagat, R. & Rokhum, S.L. 2020.
Widely used catalysts in biodiesel production: A review. RSC Advances 10(68): 41625-41679.
Elgubbi, H.M., Othman, S.S. & Harun, F.W.
2021. Comparative study on lipase immobilized onto organo-cation exchanged
kaolin and metakaolin: Surface properties and catalytic activity. Bulletin
of Chemical Reaction Engineering & Catalysis 16(2): 214-233.
El-Sherif, A.A., Hamad, A.M., Shams-Eldin,
E., Mohamed, H.A.A.E., Ahmed, A.M., Mohamed, M.A., Abdelaziz, Y.S., Sayed,
F.A.Z., El Qassem Mahmoud, E.A.A., Abd El-Daim, T.M. & Fahmy, H.M. 2023. Power of recycling waste
cooking oil into biodiesel via green CaO-based eggshells/Ag
heterogeneous nanocatalyst. Renewable Energy 202: 1412-1423.
Enguilo Gonzaga, V., Romero, R., Gómez-Espinosa,
R.M., Romero, A., Martínez, S.L. & Natividad, R. 2021. Biodiesel production
from waste cooking oil catalyzed by a bifunctional
catalyst. ACS Omega 6(37): 24092-24105.
Essamlali, Y., Amadine,
O., Fihri, A. & Zahouily,
M. 2019. Sodium modified fluorapatite as a sustainable solid bi-functional
catalyst for biodiesel production from rapeseed oil. Renewable Energy 133: 1295-1307.
Ezebor, F., Khairuddean,
M., Abdullah, A.Z. & Boey, P. 2014. Oil palm
trunk and sugarcane bagasse derived solid acid catalysts for rapid
esterification of fatty acids and moisture-assisted transesterification of oils
under pseudo-infinite methanol. Bioresource Technology 157: 254-262.
Ezzah-Mahmudah, S., Lokman,
I.M., Saiman, M.I. & Taufiq-Yap, Y.H. 2016.
Synthesis and characterization of Fe2O3/CaO derived from Anadara granosa for methyl ester production. Energy
Conversion and Management 126: 124-131.
Farooq, M., Ramli, A. & Naeem, A. 2015.
Biodiesel production from low FFA waste cooking oil using heterogeneous
catalyst derived from chicken bones. Renewable Energy 76: 362-368.
Fatimah, I., Fadillah,
G., Sagadevan, S., Oh, W. & Ameta,
K.L. 2023. Mesoporous silica-based catalysts for biodiesel production: A
review. ChemEngineering 7(3): 56.
Ghanei, R., Khalili Dermani,
R., Salehi, Y. & Mohammadi, M. 2016. Waste animal
bone as support for CaO impregnation in catalytic
biodiesel production from vegetable oil. Waste Biomass Valorization 7(3): 527-532.
Ghoreishi, S. & Moein,
P. 2013. Biodiesel synthesis from waste vegetable oil via transesterification
reaction in supercritical methanol. The Journal of Supercritical Fluids 76: 24-31.
Haq, I.U., Akram,
A.N., Nawaz, A., Zohu, X., Abbas, S.Z., Xu, Y. & Rafatullah, M. 2021. Comparative analysis of various waste
cooking oils for esterification and transesterification processes to produce
biodiesel. Green Chemistry Letters and Reviews 14(3): 462-473.
Hart, A. 2020. Mini-review of waste
shell-derived materials’ applications. Waste Management & Research 38(5): 514-527.
Hussain, F., Alshahrani,
S., Abbas, M.M., Khan, H.M., Jamil, A., Yaqoob, H., Soudagar,
M.E. M., Imran, M., Ahmad, M. & Munir, M. 2021. Waste animal bones as
catalysts for biodiesel production; a mini review. Catalysts 11(5): 630.
Khan, H.M., Iqbal, T., Ali, C.H., Javaid, A. & Cheema, I.I. 2020. Sustainable biodiesel
production from waste cooking oil utilizing waste ostrich (Struthio camelus)
bones derived heterogeneous catalyst. Fuel 277: 118091.
Laskar, I.B., Rajkumari, K., Gupta, R.,
Chatterjee, S., Paul, B. & Rokhum, S.L. 2018.
Waste snail shell derived heterogeneous catalyst for biodiesel production by
the transesterification of soybean oil. RSC Advances 8(36): 20131-20142.
Liu, J., Liu, Y., Wang, H., & Xue, S. 2015. Direct transesterification of fresh
microalgal cells. Bioresource Technology 176, 284-287.
Lokman, I.M., Rashid, U., Yunus,
R. & Taufiq-Yap, Y.H. 2014. Carbohydrate-derived solid acid catalysts for
biodiesel production from low-cost feedstocks: A review. Catalysis Reviews 56(2): 187-219.
Maheshwari, P., Haider, M.B., Yusuf, M., Klemeš, J.J., Bokhari, A., Beg,
M., Al-Othman, A., Kumar, R. & Jaiswal, A.K. 2022. A review on latest
trends in cleaner biodiesel production: Role of feedstock, production methods,
and catalysts. Journal of Cleaner Production 355: 131588.
Mansir, N., Taufiq-Yap, Y.H., Rashid, U. & Lokman, I.M. 2017. Investigation of heterogeneous solid
acid catalyst performance on low grade feedstocks for biodiesel production: A
review. Energy Conversion and Management 141: 171-182.
Mustapha, A.O., Afolabi, Y.T., Oladele,
S.G. & Adisa, S.F. 2022. Catalytic performance
for transesterification reaction using waste cooking oils over nano-calcium oxide (n-CaO)
catalyst from different waste bones. Iraqi Journal of Nanotechnology 3:
20-34.
Nur, H. 2006. Modification of titanium
surface species of titania by attachment of silica
nanoparticles. Materials Science and Engineering: B 133(1-3): 49-54.
Pandian, S., Saravanan, A.S., Sivanandi, P., Santra, M. & Booramurthy, V.K. 2020. Chapter 4 - Application of
heterogeneous acid catalyst derived from biomass for biodiesel process
intensification: A comprehensive review. In Refining Biomass Residues for
Sustainable Energy and Bioproducts, edited by Praveen Kumar, R., Gnansounou, E., Raman, J.K. & Baskar, G. Massachusetts:
Academic Press. pp. 87-109.
Satraidi, H., Prasetyaningrum,
A., Ningrum, A.S. & Dewi,
R.O.N. 2019. Development of heterogeneous catalyst from chicken bone and
catalytic testing for biodiesel with simultaneous processing. IOP Conference
Series: Materials Science and Engineering 509: 012125.
Selpiana, S., Bahrin, D.,
Habibie, M.R. & Samara, F.S. 2023. Preparation and characterization of
catalyst Zn/Al2O3 catalyst using dry and wet impregnation
method. Indonesian Journal of Fundamental and Applied Chemistry 8(1):
25-33.
Sulaiman, S., Jamaludin,
N.F.A. & Kabbashi, N.A. 2019. Development of CaO/PVA catalyst from fish bone for biodiesel production. Bulletin
of Chemical Reaction Engineering & Catalysis 14(1): 153-157.
Sulaiman, N.F., Ramly,
N.I., Mubin, M.H.A. & Lee, S.L. 2021. Transition
metal oxide (NiO, CuO, ZnO)-doped calcium oxide catalysts derived from eggshells
for the transesterification of refined waste cooking oil. RSC Advances 11(35): 21781-21795.
Suzihaque, M.U.H., Syazwina,
N., Alwi, H., Ibrahim, U.K., Abdullah, S. & Haron, N. 2022. A sustainability study of the processing of
kitchen waste as a potential source of biofuel: Biodiesel production from waste
cooking oil (WCO). Materials Today: Proceedings 63: S484-S489.
Tan, Y.H., Abdullah, M.O., Kansedo, J., Mubarak, N.M., San Chan, Y. &
Nolasco-Hipolito, C. 2019. Biodiesel production from used cooking oil using
green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy 139: 696-706.
Widiarti, N., Wijianto,
W., Wijayati, N., Harjito,
H., Kusuma, S.B.W., Prasetyoko, D. & Suprapto, S. 2017. Catalytic activity of calcium oxide from
fishbone waste in waste cooking oil transesterification process. Jurnal Bahan Alam Terbarukan 6(2): 97-106.
Xia, S., Hu, Y., Chen, C., Tao, J., Yan,
B., Li, W., Zhu, G., Cheng, Z. & Chen, G. 2022. Electrolytic
transesterification of waste cooking oil using magnetic Co/Fe–Ca based catalyst
derived from waste shells: A promising approach towards sustainable biodiesel
production. Renewable Energy 200: 1286-1299.
Yahya, S., Razali, F. & Harun, F.W.
2019. Physicochemical properties of refined palm cooking oil and used palm
cooking oil. Materials Today: Proceedings 19: 1166-1172.
Yahya, S., Wahab, S.K.M. & Harun, F.W.
2020. Optimization of biodiesel production from waste cooking oil using
Fe-Montmorillonite K10 by response surface methodology. Renewable Energy 157: 164-172.
Yang, G. & Yu, J. 2023. Advancements in
basic zeolites for biodiesel production via transesterification. Chemistry 5(1): 438-451.
Yaşar, F. 2019. Utilization of waste eggshell as
catalyst in biodiesel production and investigation of efficiency, density and
viscosity parameters of biodiesel obtained in different reaction times. International
Journal of Automotive Engineering and Technologies 8(1): 22-28.
Yassin, F., Kady,
F.Y.E., Ahmed, H.S., Mohamed, L.K., Shaban, S.A. & Elfadaly,
A.K. 2015. Highly effective ionic liquids for biodiesel production from waste
vegetable oils. Egyptian Journal of Petroleum 24(1): 103-111.
Yuliana, M., Santoso,
S.P., Soetaredjo, F.E., Ismadji,
S., Ayucitra, A., Gunarto,
C., Angkawijaya, A.E., Ju, Y.H. & Truong, C.T.
2021. Efficient conversion of leather tanning waste to biodiesel using crab
shell-based catalyst: Waste-to-energy approach. Biomass and Bioenergy 151:
106155.
Zahari, S.S.N.S., Sam, N.F.I.C., Elzaneen, K.M., Ideris, M.S.,
Harun, F.W. & Azman, H.H. 2023. Understanding the cation exchange affinity
in modified-MMT catalysts for the conversion of glucose to lactic acid. RSC
Advances 13(44): 31263-31272.
Zul, N.A. & Hussin,
S.G.M.H. 2019. Application of K-impregnated staghorn coral as catalyst in the
transesterification of waste cooking oil. Sains Malaysiana 48(4): 803-811.
*Pengarang untuk surat-menyurat;
email: farahw@usim.edu.my
|